Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies
نویسندگان
چکیده
Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy.
منابع مشابه
Toxic Human Islet Amyloid Polypeptide (h-IAPP) Oligomers Are Intracellular, and Vaccination to Induce Anti-Toxic Oligomer Antibodies Does Not Prevent h-IAPP–Induced -Cell Apoptosis in h-IAPP Transgenic Mice
OBJECTIVE—Islets in type 2 diabetes are characterized by a deficit in -cells, increased -cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). The toxic form of amyloidogenic protein oligomers are distinct and smaller than amyloid fibrils and act by disrupting membranes. Using antibodies that bind to toxic IAPP oligomers (but not IAPP monomers or fibrils) and a vaccin...
متن کاملIslet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes
Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...
متن کاملAutophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity.
Type 2 diabetes (T2D) is characterized by a deficiency in β cell mass, increased β cell apoptosis, and extracellular accumulation of islet amyloid derived from islet amyloid polypeptide (IAPP), which β cells coexpress with insulin. IAPP expression is increased in the context of insulin resistance, the major risk factor for developing T2D. Human IAPP is potentially toxic, especially as membrane-...
متن کاملHuman islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets.
Insulin secretion from the 2,000-3,000 beta-cells in an islet is a highly synchronized activity with discharge of insulin in coordinate secretory bursts at approximately 4-min intervals. Insulin secretion progressively declines in type 2 diabetes and following islet transplantation. Both are characterized by the presence of islet amyloid derived from islet amyloid polypeptide (IAPP). In the pre...
متن کاملNeutron diffraction reveals sequence-specific membrane insertion of pre-fibrillar islet amyloid polypeptide and inhibition by rifampicin.
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014